Effect on shoot water relations, and cytokinin and abscisic acid levels of inducing expression of a gene coding for isopentenyltransferase in roots of transgenic tobacco plants.
نویسندگان
چکیده
Heat shock (HS) at 40 degrees C was given to the root system of Nicotiana tabacum wild type (WT) and to HSIPT transgenic plants transformed with the bacterial cytokinin biosynthesis gene isopentenyltransferase (ipt) cloned behind the heat shock 70 promoter from Drosophila melanogaster. HS increased cytokinin concentrations in roots and leaves of transgenic plants. The effect was smaller in WT plants and restricted to upper leaves. HS also increased the activity of the cytokinin-degrading enzyme cytokinin oxidase in leaves of transgenic plants. This suggests that increases in cytokinin concentration induced by HS were lessened but not eliminated by increases in cytokinin oxidase. Elevated levels of zeatin riboside (the main transportable form of cytokinin) were also found in the HS-treated roots. It is proposed that increases in leaves were the outcome of increased transport of this hormone from roots in the transpiration stream. In conjunction with increased leaf cytokinin concentration, HS treatment to the roots increased stomatal conductivity and transpiration in both transgenic and WT plants. Subsequently, increased transpiration depressed leaf relative water content. This, in turn, raised leaf abscisic acid (ABA) concentrations, resulting in stomatal closure. It is concluded that the preceding increases in leaf cytokinin concentration, stomatal opening, and faster transpiration resulting from the localized induction of ip gene expression in roots strengthens the concept of cytokinin involvement in root to shoot signalling.
منابع مشابه
Assessment of salt tolerance in transgenic tobacco (Nicotiana tobacum L.) plants expressing the AUX gene
Transformation of plants using Agrabacterium rhizogenes may affect secondary metabolite production as well as morphological changes. In this study, T-DNA from Ri plasmid in A. rhizogenes carrying pRi15834-PRT35S-GUS was introduced into tobacco leaf segments to initiate development of transformed hairy roots. Plant regeneration from transgenic roots used MS medium, and plants regenerated fro...
متن کاملEnhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression
Responses to drought, heat, and combined stress were compared in tobacco (Nicotiana tabacum L.) plants ectopically expressing the cytokinin oxidase/dehydrogenase CKX1 gene of Arabidopsis thaliana L. under the control of either the predominantly root-expressed WRKY6 promoter or the constitutive 35S promoter, and in the wild type. WRKY6:CKX1 plants exhibited high CKX activity in the roots under c...
متن کاملFunctional Assessment of an Overexpressed Arabidopsis Purple Acid Phosphatase Gene (Atpap26) in Tobacco Plants
Background: Overexpression of known genes encoding key phosphate (Pi)-metabolizing enzymes, such as acid phosphatases (APases), is presumed to help plants with Pi availability and absorption as they are mostly exposed to suboptimal environmental conditions for this vital element.Objectives: In this study, the overexpression effect of AtPAP26, one of the m...
متن کاملAlteration of hormone levels in transgenic tobacco plants overexpressing the rice homeobox gene OSH1.
The rice (Oryza sativa L.) homeobox gene OSH1 causes morphological alterations when ectopically expressed in transgenic rice, Arabidopsis thaliana, and tobacco (Nicotiana tabacum L.) and is therefore believed to function as a morphological regulator gene. To determine the relationship between OSH1 expression and morphological alterations, we analyzed the changes in hormone levels in transgenic ...
متن کاملThe effect of Salt Stress on some Morpho-Physiological and Molecular Traits of Transgenic Tomato Plants of T3 Containing cry1Ab Gene
Salinity stress affects morpho-physiological and biochemical traits of plants. The transgenic Bt plants play a significant role in pest control, but their response and ability to cope with environmental stresses still need to be evaluated. Therefore, effect of salinity stress at 0, 50, 100, 150, and 200 mM on morphological, physiological, and molecular traits of T3 transgenic tomato plants cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 61 13 شماره
صفحات -
تاریخ انتشار 2010